SMART Hydraulic Actuators (SHA)

Fusing the power of hydraulics with the precision of servo control.

ONICS

y Solutions I Actuation Techno

All-In-One Solution

• Pre-Engineered, Factory setup & tested, ready to install

Precision Servo Control

 Accurate control of position, force and speed

Energy Efficient - Small Footprint

- Maximum force density; superior to electro-mechanical and pneumatic actuators
- Saves energy, power on demand
- Less heat, Less noise

Eliminates the Hydraulic Infrastructure

- No hoses, no leaks
- Fewer components, significant cost savings

Reliable and Durable

- No metal-to-metal wear points unlike roller or ball screw actuators
- Shock load resistant
- Exceptional long-life, minimal maintenance

The Smart Alternative to Hydraulic Cylinders and Ball Screw / Roller Screw Actuators

Innovation in Motion

kyntronics.com

Syntronics

SMART Hydraulic Actuators – System Features

Why Choose the SMART Hydraulic Actuator?

The SHA combines the best features of hydraulic power with the precision of servo control (used in ball screw & roller screw electro-mechanical actuators), without the inherent disadvantages of those approaches. The result is an actuation solution with up to 170,000 LBs (755kN) of force and superior functionality at a lower price point.

- High-Precision Brushless Servo Motor
- Servo-Controlled, Precise Displacement, Bi-Directional Variable Speed Pump
- Manifold with Integral Valve Controls
- Heavy-Duty Rod / Cylinder with Patent-Pending Rod Compensation
- Servo Drive / Motion Controller
- Fieldbus Interface, IoT Compatible
- Pressure Sensor for Force Control Operation
- High-Resolution Position Sensor

Benefits of Kyntronics SHA over Hydraulic Actuation and Ball Screw / Roller Screw Actuators

Kyntronics SHA

- All-In-One, Factory Configured, ready to install
- Closed system, no leaks, minimal maintenance
- Energy efficient, only consumes power when operating
- Precision servo control of position, force, speed
- Quiet operation

Kyntronics SHA

- Highest force density, small footprint
- Small cost increase as force /load requirements grow
- High efficiency, no metal-to-metal contact points improves reliability
- Tolerant of *"Shock Loads"*, high operational reliability
- Cannot be "back-driven"

Hydraulic Cylinder Actuators

- Require an expensive HPU and many components that must be engineered,
- assembled and tested
 - Many connection points, hoses, prone to leaks
 - Runs continuously, significant energy consumption
 - Costly to precisely control
 - Very noisy
 - Requires regular HPU component maintenance and fluid changes

Replace this HPU mess with the SHA

Ball Screw / Roller Screw Actuators

- Larger space requirements
- Expensive for high-force applications
- Gears and mechanical components create friction and losses
 - "Shock loads" can cause significant damage and premature localized wear. Require regular lubrication
 - Require a brake to hold position... additional expense

SHA Product Families

S-Series - General Purpose All-In-**One Replacement for Hydraulic Cylinders & Electro-Mechanical Actuators**


- Up to 85,000 lbf (377 kN)
- Up to 120" (3,048 mm) stroke length
- Up to 45 in/s
- (1, 159 mm/s)
- 115, 230, 460 VAC

E-Series - High-Performance **Upgrade from Pneumatic & Electro-Mechanical Actuators**

- Up to 9,500 lbf (42 kN) • Up to 120" (3,048 mm) stroke length
- Up to 10.6 in/s (269 mm/s)
- 12, 24, 48 or 72 VDC
- IP68 option

H-Series - High Speed / High Force In an Integrated Package

- Up to 170,000 lbf (775 kN)
- Up to 24" (610 mm)
- stroke length • Up to 45 in/s
- (1, 159 mm/s)
- 115, 230, 460 VAC

Right-Angle

SHA Configurations - Flexibility to fit your application

Temperature Monitoring

Control capabilities:

- Position Control
 - Standard +/-0.010in (+/-0.250mm)
 - Precision +/-0.001in (+/-0.025mm)
- Force Control
- Position & Force Control
- Four Quadrant Motion Control
- Compound Moves / Multi-axis Synchronization

Control Feedback Options:

- Force
 - Pressure Transducer(s) and/or Load Cell; 0-10Vdc or 0-20mA
- Position
- Internal or External Mount
- Analog: 0-10Vdc or 0-20mA
- Digital: SSI, TTL A Quad B, Profinet, EtherNet/IP, CANopen, IO-Link

Ethernet/IP

Other - Consult Factory

EtherCAT

- As low as 4.0µin (0.1 µm) resolution

Networking:

- Modbus RT
- Modbus TCP
- PROFIBUS
- PROFINET

Threaded Male SI

Threaded Female Standard Threaded Male SI

Clevis, 0 Degrees Clevis, 90 Degrees (O Degrees Position Shown)

End Feet

Rear Flange Plate

Rod Eye Bracket, O Degrees Rod Eye Bracket, 90 Degrees (O Degrees Position Shown)

Front Flange Plate

Side Feet

Kyntronics SMART Hydraulic Actuators are used successfully in many industries and applications.

- Aerospace
- Automotive Defense / Military
- Entertainment / Animatronics
- Energy

Forestry /Lumber

- Special Machines/Industrial Machinery
- Bending Metal Fabrication
- Closing and Clamping
- Door / Hatch Actuation
- Flexible Tooling
- Folding
- Handling Lifting
- Moving & Motion Simulation
- Positioning
- Pressing
- Punching
- Testing /Inspection Welding
- S-Series SMART Hydraulic Actuator Product Specifications

		Continuous Duty @ 230Vac		Peak @ 230Vac			Continuous Duty @ 230Vac		Peak @ 230Vac	
	*SHA Series	Force-Lbf (kN)	Avg-In/s (mm/s)	Force-Lbf (kN)	Avg-In/s (mm/s)	Series	Force-Lbf (kN)	Avg-In/s (mm/s)	Force-Lbf (kN)	Avg-In/s (mm/s)
	S08C10-13	966 (4.3)	8.8 (39.4)	2,356 (10.5)	8.8 (39.4)	S08C32-13	10,208 (45.4)	0.7 (3.1)	24,887 (110.7)	0.7 (3.1)
To Maximize Speed	S13C10-36	748 (3.3)	45.6 (202.9)	2,239 (10.0)	53.2 (236.7)	S13C32-36	7,903 (35.2)	3.6 (16.1)	23,652 (105.2)	4.2 (18.8)
	S19C10-36	1,789 (8.0)	45.6 (202.9)	2,239 (10.0)	53.2 (236.7)	S19C32-36	18,900 (84.1)	3.6 (16.1)	23,652 (105.2)	4.2 (18.8)
	S08C15-13	2,174 (9.7)	4.2 (18.5)	5,301 (23.6)	4.2 (18.5)	S08C40-13	15,463 (68.8)	0.5 (2.2)	37,699 (167.7)	0.5 (2.2)
	S13C15-36	1,683 (7.5)	21.5 (95.6)	5,038 (22.4)	25.1 (111.5)	S13C40-36	11,971 (53.2)	2.5 (11.2)	35,828 (159.4)	2.9 (13.1)
	S19C15-36	4,026 (17.9)	21.5 (95.6)	5,038 (22.4)	25.1 (111.5)	S19C40-36	28,629 (127.3)	2.5 (11.2)	35,828 (159.4)	2.9 (13.1)
	S08C20-13	3,866 (17.2)	2.0 (8.7)	9,425 (41.9)	2.0 (8.7)	S08C50-13	24,160 (107.5)	0.3 (1.5)	58,905 (262.0)	0.3 (1.5)
	S13C20-36	2,993 (13.3)	10.1 (44.8)	8,957 (39.8)	11.8 (52.3)	S13C50-36	18,704 (83.2)	1.8 (7.9)	55,982 (249.0)	2.1 (9.2)
	S19C20-36	7,157 (31.8)	10.1 (44.8)	8,957 (39.8)	11.8 (52.3)	S19C50-36	44,733 (199.0)	1.8 (7.9)	55,982 (249.0)	2.1 (9.2)
	S08C25-13	6,040 (26.9)	1.3 (5.8)	14,726 (65.5)	1.3 (5.8)	S08C60-13	34,791 (154.8)	0.2 (1.0)	84,823 (377.3)	0.2 (1.0)
	S13C25-36	4,676 (20.8)	6.7 (29.9)	13,995 (62.3)	7.8 (34.9)	S13C60-36	26,934 (119.8)	1.2 (5.4)	80,614 (358.6)	1.4 (6.3)
	S19C25-36	11,183 (49.7)	6.7 (29.9)	13,995 (62.3)	7.8 (34.9)	S19C60-36	64,416 (286.5)	1.2 (5.4)	80,614 (358.6)	1.4 (6.3)
	<u>AE EINMONETIVE AND BESEONSIVE FIMMOVEDVEEMMU HESKUNSIVE D</u>									
To Maximize Force	S08C10-05	2,356 (10.5)	2.2 (9.8)	2,356 (10.5)	2.2 (9.8)	S08C32-05	24,887 (110.7)	0.2 (0.8)	24,887 (110.7)	0.2 (0.8)
	S13C10-23	2,310 (10.3)	14.8 (65.7)	2,356 (10.5)	17.2 (76.7)	S13C32-23	24,399 (108.5)	1.2 (5.2)	24,887 (110.7)	1.4 (6.1)
	S19C10-34	2,266 (10.1)	36.0 (160.2)	2,356 (10.5)	42.0 (186.9)	S19C32-34	23,940 (106.5)	2.9 (12.7)	24,887 (110.7)	3.3 (14.9)
	S08C15-05	5,301 (23.6)	1.0 (4.6)	5,301 (23.6)	1.0 (4.6)	S08C40-05	37,699 (167.7)	0.1 (0.5)	37,699 (167.7)	0.1 (0.5)
	S13C15-23	5,197 (23.1)	7.0 (31.0)	5,301 (23.6)	8.1 (36.1)	S13C40-23	36,960 (164.4)	0.8 (3.6)	37,699 (167.7)	1.0 (4.2)
	S19C15-34	5,100 (22.7)	17.0 (75.5)	5,301 (23.6)	19.8 (88.1)	S19C40-34	36,264 (161.3)	2.0 (8.8)	37,699 (167.7)	2.3 (10.3)
	S08C20-05	9,425 (41.9)	0.5 (2.2)	9,425 (41.9)	0.5 (2.2)	S08C50-05	58,905 (262.0)	0.1 (0.4)	58,905 (262.0)	0.1 (0.4)
	S13C20-23	9,240 (41.1)	3.3 (14.5)	9,425 (41.9)	3.8 (16.9)	S13C50-23	57,749 (256.9)	0.6 (2.6)	58,905 (262.0)	0.7 (3.0)
	S19C20-34	9,066 (40.3)	8.0 (35.4)	9,425 (41.9)	9.3 (41.3)	S19C50-34	56,662 (252.0)	1.4 (6.2)	58,905 (262.0)	1.6 (7.3)
	S08C25-05	14,726 (65.5)	0.3 (1.4)	14,726 (65.5)	0.3 (1.4)	S08C60-05	84,823 (377.3)	0.1 (0.3)	84,823 (377.3)	0.1 (0.3)
	S13C25-23	14,437 (64.2)	2.2 (9.7)	14,726 (65.5)	2.5 (11.3)	S13C60-23	83,159 (369.9)	0.4 (1.7)	84,823 (377.3)	0.5 (2.0)
	S19C25-34	14,166 (63.0)	5.3 (23.6)	14,726 (65.5)	6.2 (27.6)	S19C60-34	81,593 (362.9)	1.0 (4.2)	84,823 (377.3)	1.1 (4.9)

* Shown configurations are a sampling of many options that are available. Contact Kyntronics for a specific configuration for your application. Refer to Kyntronics.com for E and H-Series Product Specifications.

About Kyntronics

An ISO 9001; 2015, AS9100D certified company, all Kyntronics actuation products are made in the USA. With vast experience in industrial, aerospace and medical industries, our in-house team of mechanical, electronics, hydraulic and software engineers have hundreds of years of engineering experience. Customer-centric, we thrive on 'solving the unsolvable' application problems while working with customers worldwide.

To discuss your application and see how the SMART Hydraulic Actuator can maximize cost efficiencies, contact Kyntronics today!

Innovation in Motion

6565 Davis Industrial Parkway Solon, OH 44139 PH: 440.220.5990 FX: 866.854.4578 Toll Free (US only): 855.596.8765 kyntronics.com

Medical Equipment Metals / Metal Fabrication

 Mobile Equipment Plastics